53 research outputs found

    Effect of carbonation on bulk resistivity of cement/carbon nanofiber composites

    Get PDF
    The conductivity of cement/carbon nanofiber (CNF) composite materials has previously been shown to be affected by parameters such as e.g. CNF content or water to cement (w/c) ratios, water saturation and temperature. However, whether and to what extent chemical processes like cement carbonation can affect the electrical conductivity of cement/CNF materials remains unexplored. To investigate this the resistivity changes upon carbonation of Portland G cement/CNF composites were followed for more than 4 months. An increase in resistivity was observed within the first weeks of carbonation followed by a plateau and a subsequent decrease after 4 months. The changes in resistivity were correlated with the progress of the carbonation front followed using X-ray tomography. The magnitude of the resistivity changes was found to be related to w/c ratio. Volumetric changes affecting the connectivity between the CNFs can explain the resistivity changes.publishedVersio

    Portland cement hydration in the vicinity of electrically polarized conductive surfaces

    Get PDF
    Hardening of Portland cement-based materials in vicinity of electrically conductive surfaces, especially when the surfaces are electrically or galvanically polarized, can lead to both morphological and chemical changes in cement close to the surfaces due to combined electrochemical and electrophysical processes. Cement hydration products close to graphite and steel surfaces being positively (anode) and negatively (cathode) electrically polarized (direct current) were studied. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy were used to compare structure and atomic composition of cement hydration products on cathode, anode and a reference surface with no electrical polarization. The application of direct current (DC) potential in aqueous Portland G cement dispersion significantly affects cement hydration products close to cathode and anode and different products were found at the anode compared to the cathode surfaces. At the graphite anode, calcium sulphate crystals along with calcium hydroxide were most abundant, while the graphite cathode was mainly covered with calcium hydroxide. The calcium hydroxide carbonated upon exposure to air during drying. When steel electrodes where used, the most significant adsorption occurred at the anode, in contrast to graphite where the largest amount of the adsorbed material was found on the cathode. The observed differences were explained in view of electrophysical (electrophoresis, electroosmosis) and electrochemical (reduction and oxidation) processes occurring at electrode surfaces upon application of DC current. The knowledge gained in this work is important for engineering of electrically conductive cement nano-composites where typically the contact surface of an electrically conductive filler and a cementitious matrix is high.publishedVersio

    Acid treatment as a way to reduce shale rock mechanical strength and to create a material prone to the formation of permanent well barrier

    Get PDF
    Utilization of natural shale formations for the creation of annular barriers in oil and gas wells is currently discussed as a mean of simplifying cumbersome plugging and abandonment procedures. Shales that are likely to form annular barriers are shales with high content of swelling clays and relatively low content of cementation material (e.g., quartz, carbonates). Shales with large content of quartz and low content of swelling clays will be rather brittle and not easily deformable. In this paper we ask the question whether and to what extent it is possible to modify the mechanical properties of relatively brittle shales by chemically removing some cementation material. To answer this question, we have leached out carbonates from Pierre I shale matrix using hydrochloric acid and we have compared mechanical properties of shale before and after leaching. We have also followed leaching dynamics using X-ray tomography. The results show that removal of around 4–5 wt% of cementation material results in 43% reduction in Pierre I shale shear strength compared to the non-etched shale exposed to sodium chloride solution for the same time. The etching rate was shown to be strongly affected by the volume of fluid staying in direct contact with the shale sample.publishedVersio

    Conductive epoxy/carbon nanofiber coatings for scale control

    Get PDF
    Calcium carbonate (CaCO3) is one of the most widespread scaling minerals and has been a long-standing problem within many industrial sectors. Scaling of calcium carbonate on conductive surfaces can be prevented electrochemically by anodic polarization. Anodic polarization, however, cannot be applied directly to metal surfaces like e.g., steel that will suffer from corrosion when polarized anodically in an aqueous environment. Thus, in this paper it is proposed to apply a conductive coating to a metal surface to allow anodic polarization and inhibit surface scaling, without corrosion of the underlying metal surface taking place. To this end an epoxy/carbon nanofiber conductive coating was developed and deposited at steel surfaces. The coating showed good adhesion to the surface and the bulk and surface resistivities were in the order of 52.80 kΩcm and 31.87 kΩ/cm2, respectively. The anti-scaling performance of the coating without- and under anodic polarization was tested upon exposure to 1.5 wt % CaCl2 solution being in contact with CO2. The coating has been tested at several different potentials to find optimal conditions for scale inhibition. Potentials above +3 VOCP caused a degradation of the coating due to oxygen evolution at the anode, as well as evolution of chlorine gas. At +1.5 and +2 VOCP the coating remained intact and the precipitation of CaCO3 was limited. On the other hand, cathodic polarization of the coating surface enhanced scaling and no coating degradation was observed at cathodic polarization even at potentials as high as -5 VOCP. The coating has thus proven a good solution to control surface scale deposition. Both anodic scale inhibition and cathodic scale acceleration have been achieved at the coating surfaces.publishedVersio

    Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties—a review

    Get PDF
    Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish (“from tank to bedside and back again”)

    Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Get PDF
    Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications

    Electrochemical enhancement and inhibition of calcium carbonate deposition

    Get PDF
    Calcium carbonate is by far the most widespread scaling material. Its deposition in pipes and flowlines has been a long-standing problem for many industries. Hence, a lot of research is devoted to scale inhibition. One of the calcium carbonate scale management methods relies on removal of calcium ions from scaling solution by electrochemically enhanced deposition. Application of potential between two electrodes may result in oxygen reduction and water electrolysis. Both processes change the local pH in close proximity to the electrodes. Solution close to the anode is becoming acidic while that close to the cathode alkaline. Solubility of calcium carbonate is pH dependent. The alkaline pH in the vicinity of the cathode promotes precipitation of calcium carbonate. On the other hand, the acidic environment near the anode prevents anode from scaling. In this paper we show how the cathodic and anodic processes, respectively, accelerate and prevent scale deposition on graphite electrode surfaces. The growth of calcium carbonate at different calcium ion concentrations and different voltage magnitudes applied were followed using X-ray computed tomography. The morphology of the deposited calcium carbonate was studied using the scanning electron microscopy. The polymorphic forms of calcium carbonate deposited at different voltage magnitudes were identified using X-ray powder diffraction. A strong correlation between the scaling rate, the average crystallite size and the voltage applied was observed.publishedVersio

    Effects of Water Content and Temperature on Bulk Resistivity of Hybrid Cement/Carbon Nanofiber Composites

    Get PDF
    Cement nanocomposites with carbon nanofibers (CNFs) are electrically conductive and sensitive to mechanical loads. These features make them useful for sensing applications. The conductive and load sensing properties are well known to be dependent on carbon nanofiber content; however, much less is known about how the conductivity of hybrid cement–CNF depend on other parameters (e.g., water to cement ratio (w/c), water saturation of pore spaces and temperatures above ambient temperature). In this paper we fill-in these knowledge gaps by: (1) determining a relationship between the cement–CNF bulk resistivity and w/c ratio; (2) determining the effect of water present in the pores on bulk resistivity; (3) describing the resistivity changes upon temperature changes up to 180 ◦C. Our results show that the increase in the water to cement ratio results in increased bulk resistivity. The decrease in nanocomposite resistivity upon a stepwise temperature increase up to 180 ◦C was found to be related to free water release from cement pores and the dry materials were relatively insensitive to temperature changes. The re-saturation of pores with water was not reversible with respect to electrical resistivity. The results also suggest that the change in the type of electrical connection can lead to two orders of magnitude different bulk resistivity results for the same material. It is expected that the findings from this paper will contribute to application of cement–CNF-based sensors at temperatures higher than ambient temperaturepublishedVersio

    Micro- and macroscale consequences of interactions between CO2 and shale rocks

    Get PDF
    In carbon storage activities, and in shale oil and gas extraction (SOGE) with carbon dioxide (CO2) stimulation fluid, CO2 comes into contact with shale rock and its pore fluid. As a reactive fluid, the injected CO2 displays a large potential to modify the shale’s chemical, physical, and mechanical properties, which need to be well studied and documented. The state of the art on shale–CO2 interactions published in several review articles does not exhaust all aspects of these interactions, such as changes in the mechanical, petrophysical, or petrochemical properties of shales. This review paper presents a characterization of shale rocks and reviews their possible interaction mechanisms with different phases of CO2. The effects of these interactions on petrophysical, chemical and mechanical properties are highlighted. In addition, a novel experimental approach is presented, developed and used by our team to investigate mechanical properties by exposing shale to different saturation fluids under controlled temperatures and pressures, without modifying the test exposure conditions prior to mechanical and acoustic measurements. This paper also underlines the major knowledge gaps that need to be filled in order to improve the safety and efficiency of SOGE and CO2 storagepublishedVersio

    Electrochemical enhancement and inhibition of calcium carbonate deposition

    No full text
    Calcium carbonate is by far the most widespread scaling material. Its deposition in pipes and flowlines has been a long-standing problem for many industries. Hence, a lot of research is devoted to scale inhibition. One of the calcium carbonate scale management methods relies on removal of calcium ions from scaling solution by electrochemically enhanced deposition. Application of potential between two electrodes may result in oxygen reduction and water electrolysis. Both processes change the local pH in close proximity to the electrodes. Solution close to the anode is becoming acidic while that close to the cathode alkaline. Solubility of calcium carbonate is pH dependent. The alkaline pH in the vicinity of the cathode promotes precipitation of calcium carbonate. On the other hand, the acidic environment near the anode prevents anode from scaling. In this paper we show how the cathodic and anodic processes, respectively, accelerate and prevent scale deposition on graphite electrode surfaces. The growth of calcium carbonate at different calcium ion concentrations and different voltage magnitudes applied were followed using X-ray computed tomography. The morphology of the deposited calcium carbonate was studied using the scanning electron microscopy. The polymorphic forms of calcium carbonate deposited at different voltage magnitudes were identified using X-ray powder diffraction. A strong correlation between the scaling rate, the average crystallite size and the voltage applied was observed
    corecore